Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Jens Hartung, ${ }^{\text {a }}$ Kristina Daniel, ${ }^{\text {a }}$

 Thomas Gottwald, ${ }^{\text {a }}$ Ingrid Svoboda ${ }^{\text {b }}$ and Hartmut Fuess ${ }^{\text {b }}$ *${ }^{\text {a }}$ Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany, and ${ }^{\mathbf{b}}$ Strukturforschung, FB11
Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany

Correspondence e-mail:
hartung@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study
$T=300 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.119$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Hydroxy-4,5-dimethylthiazole-2(3H)-thione hemihydrate

The geometry of the title compound, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, is characterized by a planar N, S-heterocyclic core that is distorted from a regular pentagon. Solvent water participates in non-chelated hydrogen bonds and acts as a twofold donor $(\mathrm{O}-\mathrm{H} \cdots \mathrm{S}=\mathrm{C})$ and a twofold acceptor $[\mathrm{O} \cdots \mathrm{H}-\mathrm{O}(-\mathrm{N})]$.

Comment

N-Hydroxy-4,5-dimethylthiazole-2(3H)-thione was prepared in order to probe the effect of substituents on the spectroscopic location and intensity of absorption bands caused by visible to near-UV light excitations of thiazole-2(3H)-thiones (Hartung et al., 2005). The compound crystallizes as the hemihydrate, (I). It was investigated by X-ray diffraction in order to compare the computed equilibrium geometry (Hartung et al., 2005) with data originating from a crystal structure analysis.

(I)

The thiazole-2(3H)-thione core in (I) is virtually planar [deviation of 0.043 (5) \AA for C2 and 0.022 (5) \AA for N3 from the plane of $\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{S} 1]$. The endocyclic bond angle $\mathrm{C} 2-\mathrm{S} 1-$ C5 measures $93.4(1)^{\circ}$, which leads to a distortion of the heterocyclic core from a regular pentagon (Fig. 1). The two endocyclic heteroatoms, N3 and S1, form single bonds with the

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Received 29 March 2005
Accepted 3 May 2005
Online 14 May 2005

Figure 2
Visualization of the hydrogen bonding between N-hydroxy-4,5-dimethyl-thiazole-2(3H)-thione and $\mathrm{H}_{2} \mathrm{O}$ in (I), viewed approximately along [010].
adjacent C atoms (Table 1). The $\mathrm{N} 3-\mathrm{C} 4$ distance, however, exceeds the mean value of 1.34 (2) \AA for an $\mathrm{N} s p^{2}-\mathrm{Cs} p^{2}$ single bond. The lengths of the other two bonds agree with the reported mean values for $\mathrm{N} s p^{2}-\mathrm{C} s p^{2}$ and $\mathrm{S}-\mathrm{Csp} p^{2}$ bond lengths (Allen et al., 1987). The geometric parameters of the thiohydroxamic acid functional group ($\mathrm{HO}-\mathrm{N}-\mathrm{C}=\mathrm{S}$) are similar to the bond lengths and angles which have recently been reported for structurally related heterocyclic compounds (Hartung et al., 1996, 2003, 2005; Hartung, Kneuer et al., 1999; Hartung, Schwarz et al., 1999; Bond et al., 2000).

The water molecule in (I), lying on a twofold rotation axis, participates in non-chelated hydrogen bonds, and acts as a twofold hydrogen-bond donor and a twofold acceptor (Table 2). This arrangement leads to the formation of two types of hydrogen-bonded columns along the b axis (Fig. 2). Each column contains molecules of N-(hydroxy)-4,5-dimethylthia-zole-2(3H)-thione of identical absolute configuration with respect to the geometry about the stereogenic $\mathrm{N} 3-\mathrm{O} 1$ axis (Hartung et al., 2003). This mode of interaction between $\mathrm{H}_{2} \mathrm{O}$ and $\quad N$-(hydroxy)-4,5-dimethylthiazole-2(3H)-thione is distinctly different from those observed in N-(hydroxy)-4-methylthiazole-2(3H)-thione hemihydrate (Bond et al., 2000). In the latter case, the water molecule is protonated by one molecule of N -(hydroxy)-4-methylthiazole-2(3H)-thione to furnish the corresponding anion and the $\mathrm{H}_{3} \mathrm{O}^{+}$cation.

Experimental

Crystals of (I) suitable for X-ray diffraction were obtained by slow addition of petroleum ether to a solution of N-(hydroxy)-4,5-dimethylthiazole-2 $(3 \mathrm{H})$-thione in diethyl ether under ambient conditions [for further details, see Hartung et al. (2005)].

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=170.24$
Monoclinic, C2/c
$a=25.564$ (1) A
$b=4.141$ (2) \AA
$c=15.000(2) \AA$
$\beta=103.08$ (2) ${ }^{\circ}$
$V=1546.7(8) \AA^{3}$
$Z=8$
$D_{x}=1.462 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1854 reflections
$\theta=2.9-18.6^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=300$ (2) K
Prism, pale yellow $0.60 \times 0.48 \times 0.36 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD area-detector
ω scans
Absorption correction: analytical CrysAlisRED (Oxford Diffraction, 2002)
$T_{\text {min }}=0.708, T_{\text {max }}=0.808$

$$
4701 \text { measured reflections }
$$ 1553 independent reflections 1405 reflections with $I>2 \sigma(I)$

$$
R_{\text {int }}=0.041
$$

$\theta_{\text {max }}=26.4^{\circ}$
$h=-31 \rightarrow 31$
$k=-3 \rightarrow 5$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.066 P)^{2}\right. \\
+1.7712 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.012 \\
\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1

Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

S1-C5	$1.751(2)$	S2-C2	$1.672(2)$
S1-C2	$1.729(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.341(3)$
N3-C4	$1.406(3)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.489(3)$
N3-C2	$1.350(3)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.501(3)$
N3-O1	$1.380(2)$		
			$128.4(2)$
N3-C2-S1	$106.8(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$110.3(2)$
S2-C2-S1	$125.0(1)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1$	$104.9(2)$
N3-C2-S2	$128.2(2)$	$\mathrm{N} 3-\mathrm{O} 1-\mathrm{H} 1$	$118.2(2)$
C5-C4-N3	$111.3(2)$	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$121.5(2)$
N3-C4-C6	$119.0(2)$	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{O} 1$	
S2-C2-N3-O1	$5.3(3)$		

Table 2
Hydrogen-bond geometry (${ }_{\mathrm{A}}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 \cdots O2 ${ }^{\text {i }}$	$0.86(3)$	$1.82(3)$	$2.680(2)$	$176(3)$
O2-H2 \cdots S2	$0.84(1)$	$2.41(1)$	$3.246(2)$	$171(3)$

Symmetry codes: (i) $x, y-1, z$.

Atoms H1 and H2 were located in a difference Fourier map and their atomic coordinates were refined, with $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}$ of O 1 or O 2 , respectively. All other H atoms were positioned geometrically and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlisCCD (Oxford Diffraction, 2002); cell refinement: CrysAlisRED (Oxford Diffraction, 2002); data reduction: CrysAlisRED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP3 (Farrugia, 1997, 2005); software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Ha1705/5-2 and Graduiertenkolleg 690: Elektronendichte - Theorie und Experiment).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bond, A. D., Feeder, N., Teat, S. J. \& Jones, W. (2000). Tetrahedron, 56, $6617-$ 6624.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (2005). ORTEP3 for Windows. University of Glasgow, Scotland.
Hartung, J., Hiller, M., Schwarz, M., Svoboda, I. \& Fuess, H. (1996). Liebigs Ann. Chem. pp. 2091-2097.
Hartung, J., Kneuer, R., Schwarz, M., Svoboda, I. \& Fuess, H. (1999). Eur. J. Org. Chem. pp. 97-106.
Hartung, J., Schwarz, M., Svoboda, I., Fuess, H. \& Duarte, M. T. (1999). Eur. J. Org. Chem. pp. 1275-1290.
Hartung, J., Schwarz, M., Svoboda, I. \& Fuess, H. (2003). Acta Cryst. C59, o682-0684.
Hartung, J., Spehar, K., Svoboda, I., Fuess, H., Arnone, M. \& Engels, B. (2005). Eur. J. Org. Chem. pp. 869-891.
Oxford Diffraction (2002). CrysAlisCCD and CrysAlisRED. Versions 1.170.14. Oxford Diffraction, Oxford, England.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

